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The superconducting state of the cuprates in the presence of
a magnetic 5eld has been investigated very actively in the past
few years through measurements of electrical and thermal trans-
port, ac conductivity, speci5c heat, and other quantities. The
observed behavior is not well understood; it probes the nature of
quasiparticles, vortices, and their interactions in a superconduc-
tor with nodes in the pair amplitude. We summarize here experi-
mental results and our attempts to understand the phenomena.
( 1999 Academic Press

1. INTRODUCTION

The discovery of superconductivity in the cuprates (1) has
led to an intense exploration of this fascinating family of
systems. It has become clear that their normal state (i.e., the
state above ¹

c
) is unique and is qualitatively unlike known

metals (2, 3). The nature of this metallic state and the mecha-
nism of superconductivity are active open questions, 12
years and more than 100,000 papers later. Meanwhile, due
to the e!orts of a large number of solid state chemists and
physicists, excellent, well-characterized single crystalline
and thin "lm samples have become available, and we now
have wide variety of high quality experimental results on
these systems. The systems are experimentally over-deter-
mined!

In the superconducting state, the excitation gap *k, whose
magnitude measures the energy required to break up a pair
(kp, !k!p) and create quasiparticles, appears to be
a strong function of wavevector k (4}6). It has nodes and
changes sign as k moves over the Fermi surface; a form that
"ts the data well is *

k
"*

0
(cos k

x
a!cos k

y
a) where a is the

lattice constant. Clearly the gap vanishes at the points
k
x
"$k

y
, and there are low energy quasiparticle excitations

around these nodal points. This d
xÈ~yÈ

order leads to char-
acteristic, novel temperature dependences for physical prop-
erties (6}8). Since the gap vanishes at k

x
"$k

y
, external

perturbations such as magnetic "elds can have strong and
even singular e!ects on the excitation spectrum. For
example, it has been argued on the basis of an electronic
thermal conductivity kink observed at low "elds and tem-
85
paratures (9) that there is a new fully gapped phase in this
region of ¹ and H. In this article, I "rst summarize our
experimentally derived picture of the superconducting state
(Section 2). Some features of the vortex or mixed state, e.g.,
speci"c heat, tunnelling density of states, ac conductivity,
and thermal transport, are then mentioned (Section 3). At-
tempts (10}12) to describe theoretically a possible new fully
gapped complex order parameter phase in the presence of
vortices are summarized (Section 4). Because of the anisot-
ropy of the superconductor, the energy of the vortex lattice
depends on its orientation with respect to the nodal line.
A calculation of this e!ect (13, 14) and the consequent
transition in the vortex lattice structure are then outlined
(Section 5). The basic new features a!ecting electronic prop-
erties of the superconducting phase are the unusual, gapless
Dirac excitation spectrum of the quasiparticles and the
nonlocality of the order parameter * (r, r@). Because of the
latter, any variation of the order parameter with position
(i.e., with the electron pair center of mass coordinate
R"M(r#r@) /2N a!ects the internal state of the pair (de-
scribed by the k dependence of *k; k is the Fourier trans-
form of the internal or relative coordinate (r!r@)) . This
coupling has been obtained (15) and is brie#y mentioned
below (Section 6). It has a number of qualitative conse-
quences. Finally, (Section 7) I discuss electronic longitudinal
and transverse or Hall-like thermal conductivities (16}18)
which have an unusual temperature and "eld dependence.
The concluding section (Section 8) mentions some open
questions.

2. THE SUPERCONDUCTING STATE

There is now considerable experimental evidence sup-
porting the view that the superconducting state in the cu-
prates is a coherent superposition of spin singlet electron
pairs with the electrons in a relative d orbital state (5). For
example, from angle resolved photoemission (ARPES) ex-
periments it is clear that the energy of the highest occupied
quasiparticle state in a Bi2212 superconductor depends on
its in-plane momentum k

@@
("k

x
, k

y
) (4). For optimally

doped Bi-2212 with ¹
c
K90 K the minimum energy has the
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form D*kD"*
0
Dcos(k

x
a)!cos(k

y
a)D with *

0
"25 meV.

Whether *k actually has a zero or not is uncertain to within
about 10 meV, the energy resolution of the ARPES
measurements. A broadly similar dependence of *k with k is
observed irrespective of doping and of the speci"c chemical
system. The ARPES measurements also reveal a Fermi
surface in the (k

x
, k

y
) plane with a large area approximately

equal to (1!x) electrons per unit cell where x is the hole
fraction. The Fermi surface shape seems &&universal'' as well.
Another important observation from photoemission is that
the quasiparticles near the Fermi surface are well de"ned;
a quasiparticle k has a well-de"ned energy Ek to within
instrumental resolution. By contrast, in the normal state
(above ¹

c
), the spectral density is rather broad and asym-

metric. Quasiparticles are not well-de"ned excitations in the
normal state, for reasons that are not clear.

ARPES experiments are sensitive to the magnitude of
*k and not its sign or phase. A number of phase sensitive
experiments using atomically engineered Josephson junc-
tions show that the order parameter does have positive and
negative parts depending on orientation with respect to the
crystal axes. They thus suggest that *kK*

0
[cos(k

x
a)!

cos(k
y
a)], at least in optimally doped superconductors. Such

a gap function changes sign across the lines k
x
"$k

y
.

Indirect experimental evidence for this kind of gap is
provided, for example, by the temperature dependence of
the super#uid density, as measured by the penetration
depth. The super#uid density decreases linearly with tem-
perature. This is most naturally understood as being due to
thermally excited quasiparticles, whose density is propor-
tional to temperature¹ for a gap that grows linearly around
the nodal points (zeroes) (6}7). The measured rate of de-
crease of the super#uid density with temperature is in rea-
sonable agreement with what is expected from the gap
function determined by ARPES (19), though there are sys-
tematic deviations.

A superconducting gap of the form *
k
"*

0
[cos(k

x
a)

!cos(k
y
a)] is expected in a lattice model if nearest neighbor

electrons form a spin singlet pair and if the pair amplitude
along the y-axis has a sign opposite to that of the amplitude
along the x-axis (&&d-wave'' pairing). If electrons repel each
other strongly when on the same site and have an antifer-
romagnetic Heisenberg nearest neighbor spin exchange
coupling J, nearest neighbor pairing is energetically favored.
However, it is not entirely clear as to why pair amplitudes
along x- and along y-axes are out of phase. There are several
measurements suggesting a (relatively small) admixture
of same sign (or extended s) pairing (20). In the normal state,
there is evidence for a precursor pseudogap with d

xÈ~yÈ
symmetry.

The simplest realistic picture of the superconducting state
in cuprates is thus one of a gap corresponding to nearest
neighbor d-wave pairing and well-de"ned planar quasipar-
ticle excitations consistent with this. The layers are Joseph-
son coupled with their nearest neighbors. By contrast, there
is no general agreement on how to describe the normal
state. A number of consequences of this model for the
superconductor have been explored for many physical
properties, with mixed success. One area where understand-
ing remains poor is the e!ect of an external magnetic "eld H
(;H

c2
, the upper critical "eld). In the next section, some

experimental results will be summarized; attempts to under-
stand these will be the subject of the bulk of this article.

3. CUPRATE SUPERCONDUCTOR
IN A MAGNETIC FIELD

It was established very early that cuprates are extreme
type II superconductors (with penetration depth jK1500 As
and coherence length mK15 As so that the Ginzburg}
Landau parameter (j/m)&100<1). It is also well known
that a magnetic "eld enters in units of a #ux quantum
/
0
"(hc/2e), thus establishing electron pairs as basic enti-

ties. The arrangement of vortices (ordered lattice, glass or
#uid) as a function of "eld, temperature, and disorder is
a major subject which I do not touch upon, except in
Section 5, where the question of the vortex lattice structure
at ¹"0 and in the limit of no disorder (pinning) is dis-
cussed. Vortex motion in an applied electric "eld leads to
longitudinal and Hall resistivities that di!er qualitatively
from that observed in conventional superconductors. One
widely studied phenomenon is the anomalous sign of the
Hall e!ect (21), which seems to be correlated with doping
level and cannot be reconciled with expectations based on
standard Ginzburg}Landau theory. We do not discuss these
phenomena here, but concentrate on vortices at rest; it
might be argued that if these are not well understood, e!ects
dependent on vortex motion are even harder to make sense
of.

Four kinds of experimental results are mentioned here:
speci"c heat, tunneling spectroscopy, microwave conductiv-
ity, and thermal transport, all in the vortex state.

(i) Specixc Heat

The electronic speci"c heat in a magnetic "eld has been
measured extensively in YBa

2
Cu

3
O

7~d (22, 23). One mo-
tivation is the prediction of Volovik (24) that the super#uid
velocity arround a vortex adds to that of the quasiparticle
and thus induces a density of states at the nodes propor-
tional to JB. Consequently one has a linear in ¹ speci"c
heat with this "eld dependence. Careful measurements of
the speci"c heat (23) indicate the following. There is a linear
in ¹ term at B"0, of order 0.4 mJ/g at. K. Its origin is
unknown. There is a "eld dependent term typically 20 to
10% of this. It does not have the simple ¹B1@2 dependence
predicted; this could be because the above form is expected



FIG. 1. Thermal conductivity of a clean single superconducting crystal
of Bi-2212, with magnetic "eld k

0
H perpendicular to the ab-plane, for

various values of k
0
H in Tesla, at di!erent temperatures indicated. (From

Ref. (9)).
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for large "elds and low temperatures, i.e., for x"
[(¹/¹

c
)(B/B

c2
)1@2];1. The measurements are in the regime

0.3(x(5. The speci"c heat approximately "ts a scaling
plot (C

7035%9
/c

n
¹)"k (B/B

c2
)1@2F (x), the measured func-

tional dependence being consistent with limiting forms of
F (x) for small and large x. However, due to the existence of
a sizeable zero "eld linear speci"c heat, and in the absence of
any systematic theory for the density of quasiparticle states
due to a dense collection of vortices at ¹O0 in the presence
of other disorder, the interpretation of the magnetic "eld
dependence is tentative.

(ii) Bound States in the <ortex

Tunnelling spectroscopy of #ux lines in YBa
2
Cu

3
O

7~d
reveals (25) a peak in the density of states when the STM tip
is in the vortex core region. It strongly suggests a bound
state con"ned to the core with a binding energy of about
5.5 meV. Such a bound state is not expected for a d-wave
superconductor, since the order parameter vanishes in some
directions unlike an s-wave superconductor where the iso-
tropic but radial distance dependent pair potential of the
core can con"ne quasiparticles. Some calculations suggest
(26) no bound state, while others (27) do. However, these
approaches do not include nonlocal e!ects correctly, as we
shall see below (15). Thus the theoretical question of
whether there are vortex core bound states in a d-wave
superconductor cannot be considered settled. It is interest-
ing to note, however, that in BSCCO, which is much more
two dimensional, no such bound state peaks were seen (28).
This could be because of possible vortex motion in the latter
smearing out such a peak or because the bound state energy
is higher than the gap (25). Further investigation is clearly
needed.

(iii) Microwave Conductivity

The microwave conductivity of thin "lms of BSCCO
shows an unusual magnetic "eld dependence. Mallozzi et al.
(29) "nd that p

2
the imaginary part of the conductivity has

a part decreasing as JB, in the range B( 5¹. The term is
nearly temperature independent. They argue that this can-
not be attributed to vortex dynamics, but that it is due to
a magnetic "eld dependent reduction in the super#uid den-
sity, since p

2
(u)"!(n

s
e2/miu) in an equilibrium supercon-

ductor where n
s
is the super#uid density. Again, this unusual

"eld dependence is attributed to excitation of circulating
supercurrent by a vortex and consequent &&paramagnetic''
reduction in super#uid sti!ness. However, the JB depend-
ence is expected according to semiclassical arguments (29,7)
at ¹"0, or more precisely, for x"(¹/¹

c
)/(B/B

c2
)1@2; 1 as

mentioned above. The measurements are mostly in the
opposite range. Thus while the experimental results are
interesting, the theoretical explanation is not conclusive.
(iv) Thermal Transport

Some of the most interesing insights into the electronic
properties of the vortex state are from measurements of
thermal conductivity. The electronic thermal conductivity
(if it can be separated from the lattice or phonon contribu-
tion) is a probe of energy current relaxation of quasiparticles
interacting with static vortices. (In the absence of an external
electric "eld, vortices do not move). Here, perhaps the most
unexpeted result is the sharp thermal conductivity anomaly
reported by Krishana et al. (9).

Krishana et al. (9) "nd in very clean single crystals of
BSSCO that the electronic thermal conductivity (in the
ab-plane, for B perpendicular to it) decreases as a function of
the magnetic "eld, but suddenly #attens out at a sharply
de"ned B value B* (Fig. 1). This critical "eld, typically of
order a few Tesla, depends on temperature ¹* approxim-
ately as JB*. Krishana et al. argue that while the decrease
in i

T
with B is understandable as a consequence of scatter-

ing by a larger number of vortices, the sudden "eld indepen-
dence or vanishing of i

T
implies that there are no thermally

excited quasiparticles beyond B* to carry the heat current.
This can happen if a fully gapped phase is stable beyond B*.
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Thus the phase diagram of a cuprate superconductor has
a new fully gapped phase inside it at low ¹ and B (Fig. 2).
Subsequent experiments (30) "nd a great deal of hysteresis
associated with this transition (considerable di!erence of
behavior in "eld cooled and zero "eld cooled samples); often
the &&transition'' is smooth and is best described as a cross-
over (31). Thus the existence of a true phase transition at low
¹ and B, and its nature, are both not fully settled yet.
I discuss below a calculation (11) which shows that an
Ad

x2~y2
#iBd

xy
order parameter is inevitable in a magnetic

"eld. In such a case, the gap does not vanish. This order
parameter is a consequence of quasiparticle vortex interac-
tion which produces phase shifted Andreev scattering, thus
acting as a source of out of phase pair potential. Other
explanations involve an analogy with the quantum Hall
e!ect (10) and the Landau-like quantization of quasiparticle
energy levels in a magnetic "eld (32). The possibility of a new
phase in the presence of a magnetic "eld in a d

x2~y2
super-

conductor is a very interesting issue.
In general, the thermal conductivity i

xx
shows a peak as

a function of temperature ¹ at B"0 (17, 18, 31). The peak
occurs around and below ¹

c
. Since there is other evidence,

e.g., from ARPES, that quasiparticles are ill de"ned above
¹
c
and well de"ned below ¹

c
, it seems natural that they do

not transport heat current above ¹
c
but do so below ¹

c
, thus

leading to a peak in i
xx

(¹). The phonon contribution de-
creases smoothly with ¹ across ¹ . On applying a magnetic
FIG. 2. Possible phase diagram of a cuprate superconductor in a mag-
netic "eld. The mixed or vortex or Abrikosov phase for k

0
H(H

c2
K150 ¹

and ¹(¹
c
\90 K is indicated. At low temperatures and "elds, a possible

new fully gapped phase (shown) is suggested by thermal conductivity
anomalies.

FIG. 3. The diagonal thermal conductivity k
xx

in untwinned
YBa

2
Cu

3
O

7
as a function of k

0
H in Tesla, for di!erent temperatures (upper

panel) and the Hall thermal conductivity (lower panel). (From Ref. (33))

c

"eld the thermal conductivity is observed to decrease
(Fig. 3). This could be because of extra scattering of
quasiparticles by vortices, which increases with their den-
sity, i.e., with B. There is considerable experimental evidence
(9, 17, 18, 31) that the phonon thermal conductivity is inde-
pendent of B, i.e., the phonon vortex scattering is weak.
Thus i

xx
(B, ¹) probes a consequence of the quasiparticle

vortex interaction. A phenomenological "t to the data has
been obtained by Ong and co-workers (17). They "nd that

i
xx

(H,¹)"
i0
e
(¹)

1#p(¹) DHD
#i

B
(¹), [1]

where the mean free path l (¹) associated with i0
e
(¹), and

p (¹) have the same temperature dependence. Both increase
dramatically as temperature decreases; l (¹) grows approx-
imately as ¹~2 from about 40 As near ¹

c
(K83 K) to about

3000 As near 10 K. The simple "eld dependence of Eq. [1] is
not understood. Even more interestingly, the Hall thermal
conductivity i

xy
(H, ¹) has a linear H dependence for small

H (9, 33), the slope of which is also related to l (¹). More
precisely, writing the Hall angle h

Q
as h

Q
"i

xy
/i

xx
, and



FIG. 4. A process leading to an id
xy

pair amplitude involving scattering
of a quasiparticle k to a state k@"(k!q) by the supercurrent around the
vortex and Andreev re#ection by local pair potential inhomogeneity near
the vortex core.
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expressing h
Q

as

h
Q
"(l

H
eB/+k

F
), [2]

it appears (33) that the Hall length l
H

has the same temper-
ature dependence as l (¹)! On plotting the electrical Hall
angle (h

e
/B), one "nds that it follows the same temperature

dependence and has the same size, namely (h
e
/B) and (h

Q
/B)

fall on the same curve (33). It is not clear if this is a coincid-
ence or re#ects the persistence of certain kinds of #uctu-
ations above and below ¹

c
.

At very low temperatures (¹(0.2 K) it appears that
i
xx

(H, ¹) increases with increasing H (34). The increase has
been "tted to a JH form whose coe$cient decreases with
increasing Zn doping. This dependence has been connected
with the magnetic "eld induced density of states near the
node (24,7).

We thus see that there is a rich variety of novel e!ects
observed for d-wave superconductors in a magnetic "eld.
They are not well understood. In what follows, I outline
some of our e!orts to understand and predict speci"c phe-
nomena, as well as to develop general underlying ideas.

4. idxy ORDER INDUCED BY VORTICES

I discuss here a speci"c mechanism (11) due to the coup-
ling between quasiparticles and the supercurrent as well as
order parameter inhomogeneity associated with vortex,
which necessarily causes out of phase d

xy
order in a

d
x2~y2

superconductor. The e!ect is nonlocal in space, i.e., it
arises from gradient terms.

Vortices a!ect the pair potential in two ways. The poten-
tial acquires a phase / which changes by 2p on going round
a vortex. The magnitude of the order parameter goes to zero
at the core of the vortex and rises to its equilibrium value
over a distance of order m, the pair size. Because of the
former, there is a nonzero super#uid momentum mv

s
(r)"

[(+/2)$/!(eA/c)] which adds to the electron momentum.
The quasiparticle Hamiltonian can be written as

H"

1

2m
+
p Pdrt`p (r)Mp#mv

s
(r)N2tp (r)

#Pdr dr@ [*
m
(r!r@, MR!RlN)t`

t
(r)t`
s

(r@)#hc]. [3]

Here R is the center of mass coordinate M(r#r@)/2N, and
Rl's are locations of the vortices. In the momentum repres-
entation, and the Nambu formalism for pair states, Eq. [3]
can be expressed as

H"H
0
#(Hh#H

m
#H

KE
), [4a]
where

H
0
"+

k

a`
k

(eJ
k
q
3
#*

k
q
1
) a

k
[4b]

Hh"+
k,q

a`
k
M+k ) v

s
(q)N a

k~q
[4c]

H
m
"!*

0
+
k,q

f
kq

(a`
k

q
1
a
k~q

) [4d]

and H
KE

is the kinetic energy of the super#uid. The "rst
term, H

o
, in Eq. [4b] describes a uniform d

x2~y2
supercon-

ductor (if *
k

is given by *
k
"*

0
(cos k

x
a!cos k

y
a)). The

terms Hh, Hm
, and H

KE
represent e!ects due to vortices.

Hh corresponds to the scattering of a quasiparticle by the
supercurrent around a vortex. The term H

m
describes the

change in the pair potential due to the vortex core; f
kq

is
a form factor of this potential. The last term in Eq. [4a],
H

KE
, is the super#uid kinetic energy (mv

s
(r)2/2).

The question of interest is the e!ect of the terms of Eqs.
[4c] and [4d] on the pair potential. To "nd this, we treat
these terms as perturbations and calculate out of phase pair
correlations Sa`

k
q
2
a
k
T induced by them. Figure 4 shows that

there is a term in this pair amplitude of "rst order in both
H

0
and H

m
. The physical meaning of this process is obvious:

an electron of momentum k gets scattered to another state
(k!q) by the super#uid #ow; this shifts its phase. It is then
Andreev re#ected to a hole state by the pair poten-
tial inhomogeneity associated with the vortex core.
Detailed calculation shows (11) that this term has an ik

x
k
y



90 T. V. RAMAKRISHNAN
dependence on k, namely

Sa`
k
q
2
a
k
T"+

q

Mi (k]q) ) e'
z
NMek~qNg

kq
[5a]

Kik
x
k
y
+
q

(q2
x
!q2

y
) g

kq
. [5b]

In Eq. [5a], the "rst term is from the k ) v
s
(q) coupling, and

the second term is from the intermediate quasiparticle state.
Equation [5b] makes it clear that the k dependence is of the
form ik

x
k
y

and the contribution is from nonlocal (of order
q2) anisotropic e!ects (q2

x
!q2

y
O0). g

kq
is a symbol for all

the remaining factors.
Other processes involving Hh also induce an id

xy
order. It

can also be shown that, dynamically, a gap function with
this symmetry is generated. Thus a fully gapped state is
inevitable at zero temperature, in a magnetic "eld, due to
quasiparticle vortex interaction. The size of this term is
estimated to be about *

xy
&10 (n

v
/n)*

0
where n

v
is the

vortex density and n is the electron density. At nonzero
temperatures, entropic e!ects disfavor a fully gapped phase
so that a transition to a d

x2~y2
state occurs at some

¹*&*
xy

. This yields numerically the right temperature
scale, but a temperature dependence linear in B.

The above discussion assumes no particular arrangement
of vortices. It is clear, however, that a lattice of voritces can
produce a Bragg/superconductive gap. We (12) have cal-
culated the electronic structure of a vortex lattice using the
Bogoliubov}de Gennes equations. We "nd that there is
a gap in the excitation spectrum (at ¹"0) at the nodal
points. The gap is actually of order Sp ) v

s
(G)T&(k

F
G/m).

Now the reciprocal lattice vector GJJB, so that the
magnetic "eld dependence is close to that observed (9).
Calculating the pair amplitude Su

k
v
k
T, we "nd it complex,

with an imaginary k
x
k
y

component. There are some prob-
lems with the slow convergence of the Hamiltonian matrix
in Brillouin zone space largely due to the slow decrease (1/G)
of v

s
(G) with G. These are being overcome by partitioning

and perturbative evaluation of large G e!ects. Thus, there
seems to be considerable theoretical evidence for a vortex
induced id

xy
phase, which leads to sizeable gaps of the right

B dependence for the lattice.

5. GROUND STATES OF THE VORTEX LATTICE

In an s-wave superconductor, vortices repel each other
isotropically: the repulsive vortex}vortex interaction is
screened at distances of order the penetration depth j. The
vortex lines are also straight. Under these conditions, the
stable arrangement is a close packed triangular lattice with
vortices as far away from each other as possible. This is the
well-known Abrikosov lattice. In a d

x2~y2
superconductor,

the interaction between vortices is anisotropic. The e!ect of
this anisotropy on the stable vortex lattice structure is an
obvious question of interest. Experimentally, there is evid-
ence from small angle neutron scattering (35) and from
scanning tunnelling spectroscopy (25) in YBCO systems
that the vortices are arranged in a distorted, centered rec-
tangle. The order seems short-ranged, however. Part of the
unit cell distortion is due to anisotropy in the penetration
depths j

a
and j

b
. This leads only to a distorted triangular

lattice irrespective of the vortex density. We are interested in
anisotropic e!ects beyond these.

There have been calculations of the consequences of order
parameter anisotropy on vortex lattice structure near
¹
c
(36). These predict a distorted centered rectangle struc-

ture. Recently, Franz et al. (13) considered the problem of
vortex interaction deep in the d

x2~y2
phase, at ¹"0, using

a semilocal approximation and found that as a result of the
dependence of this interaction on the angle with respect to
the nodal directions, there is a continuous deformation of
the vortex lattice unit cell with vortex density. We (14) have
looked at this problem without using further approxima-
tions and "nd that there is a sudden transition at about 5 T
from a triangular lattice structure to a centered square, the
reciprocal lattice vectors of both structures being oriented
along the nodal direction. I discuss the physical idea and the
calculations below.

Two vortices interact via the currents or current #uctu-
ations they produce in the quasiparticle #uid. The appropri-
ate susceptibility for this is the current correlation function
sab (q) where a and b are Cartesian components of the
electron momentum, and q is the momentum transfer. For
a vortex lattice, qs relevant are the reciprocal lattice vectors
G. The energy of pairwise interaction of the vortices is

*
E
"A

m2

2 B+
G

Mv
s
(G)Nsab (G)Mv

s
(!G)Nb [6]

We calculate this with the susceptibility appropriate to
a superconductor described by the Hamiltonian Eq. [4b].
As noted Franz et al. (13), the susceptibility is nonanalytic
and anisotropic in q, there being a linear term of the form
Dmax (g

x
, g

y
)D. We "nd, however, that relative structural stab-

ility is determined by the anisotropy in the quadratic term
[in sab (q)]. This requires careful treatment of the nonlocal
contribution from k dependence of *

k
. We consider the

ground state energy as a function of two angles describing
the vortex lattice: one describes the shape of the unit cell (a
centered rectangle) and the other its orientation with respect
to the k

x
"k

y
line. We "nd that at low "elds, the ground

state is a triangular lattice, while at high "leds it is a centered
square with G along the nodal line. The transition occurs at
about 5 T, the "eld being determined by the size of the
anisotropy. At low "elds, the nodal orientation e!ect is
small and the Abrikosov structure is stable. At higher "elds,
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the orientational e!ect is maximized by an orientationally
commensurate square structure. The dependence of the
transition "eld on parameters like *

0
and the Fermi surface

shape is being investigated. At ¹O0, there are entropic
e!ects not inlcluded in the theory which a!ect the structural
transition boundary. There is as yet no experimental test of
the above prediction.

6. NONLOCAL EFFECTS IN A d WAVE
SUPERCONDUCTOR

The new e!ects mentioned above arise from the fact that
the pair potential has zeroes and varies with pair mo-
mentum k. I outline here a more general description of the
consequences of a nonlocal order parameter (15).

Consider, for example, the equations for the single
particle Greens functions. These Gor'kov equations for
G(rq, r@q@) describe how an electron at rq moves to a point r@q@
because of its own kinetic energy and because of the pair
potential * (r, r@). Now when vortices are present, the latter
necessarily has a phase which changes by 2n on going round
a vortex (R"Rl). This phase can be transferred to each
electron by a gauge transformation and adds to its mo-
mentum by an amount mv

s
(R) as discussed earlier. This line

of thinking suggests that the natural variables in which to
discuss the equations of motion are ((r#r@)/2)"R and
(r!r@)"q. The former is the center of mass coordinate in
which quanatities vary smoothly, on a scale m or greater,
and the latter is the relative or internal coordinate of the
pair, which has a typical range a (lattice constant) of k~1

F
.

The two degrees of freedom are connected when the order
parameter or pair potential is nonlocal e.g., * (r!r@)"0 for
r"r@ and nonzero only for r!r@ being nearest neighbors.
The center of mass motion (dependence of * (r, r@) on R)
a!ects internal motion to the "rst order in (1/k

F
m). This is

a semiclassical correction to the local approximation of
Gor'kov equations. Since (1/k

F
m) is not very small in cu-

prates (it is of order 1/5 or so), such corrections can be
sizeable.

The mixed representation (k, R), where k is the Fourier
transform of q"(r!r@), is convenient for describing the
equations of motion. We "nd (15) that the equation for
G (k, R;u) has the form

[u!eJ
k
!(+k/m) )M(P

R
/2) #mv

s
(R)N]G (k, R;u)

!* (k;R)F`(k, R;u)

!(i/2) M(L*(k,R)/Lka) (LF`(k, R;u)/LRa)!(kHR)N"1.
[7]

In Eq. [7], u is the frequency and the third term in the
square bracket on the left hand side and the last term on
that side are all (1/k

F
m) corrections. If they are neglected, one

has a local version of the equation determining Green's
function. The Volovik approximation amounts to keeping
only the k.v

s
(R) term. This neglects the quantum #uctuation

term (+k )P
R
/2m) due to center of mass motion, and the last

term is novel, being nonzero only when *k depends on k. We
see that this term couples the internal state k to center of
mass motion R. If the anomalous Green's function F de-
pends on the center of mass coordinate as near a vortex or
an interface, the internal state *k changes. For example, if
*k\(cos k

x
a!cos k

y
a), a term going as i (L*

k
/Lk

x
) or

i sin k
x
a is induced. This is the source of the ik

x
k
y

order
induced by a vortex, for example. The consequences for
a vortex are being worked out, e.g., in the Eilenberger or
semiclassical approximation (37).

For a single vortex, in a region of space where the order
parameter changes rapidly, i.e., near the core, so that
(LF/LRa) is the largest, sizeable id

xy
order is induced. Thus

the local order parameter near the vortex core is complex
and therefore nonzero; it can sustain a bound state, such as
is observed (25).

7. THERMAL TRANSPORT IN THE VORTEX STATE

At temperatures and "elds such that the vortices are not
ordered, quasiparticles scatter o! the dense collection of
vortices at rest. We (38) have investigated the consequences
of this scattering, superimposed on other sources of
quasiparticle lifetime, in the Born approximation. We calcu-
late the conductivity. Since the vortices have well-developed
local short range order, the scattering from them is modi"ed
by the structure factor S (q) (39) which depends on positional
correlations between vortices. S (q) has a strong peak at
DqDKDG

s
D where G

s
is the smallest reciprocal lattice vector of

the crystalline solid formed at lower ¹ but at the same
vortex density. Thus, scattering with wavevector transfer
G

s
is picked out, in contrast to the absence of such a prefer-

ence in a random arrangement vortex gas. Further, since
DG

s
D is small in relation to the Fermi, wavevector k

F
, the

quasiparticle scattering is by small angles, and the scattering
in term (cos h term in current relaxation rate) is large. All
this leads to a quasiparticle relaxation rate by vortices
proportional to their density (38). This adds to other relax-
ation processes, as suggested by the phenomenological "t
Eq. [1].

There is a transverse scattering of quasiparticles by a vor-
tex which directly contributes to the Hall thermal resistance
(38). This leads, at low "elds, to the observed behavior.

At very low temperatures, there are indeed very few
quasiparticle states near the node, and the scattering from
vortices causes states in this region, as from any other
random scatterer (40). Thus there are "eld-induced states at
low ¹ that carry the energy current (41). At high temper-
atures, there are thermally excited quasiparticle states pres-
ent, and as discussed above, random scattering by vortices
leads to decreasing thermal conductivity as the density of
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vortices increases. Thus both kinds of experimental observa-
tions can be reconciled in a single framework.

8. CONCLUSION AND OUTLOOK

I have described above some of the unusual electronic
properties of the vortex phase of high ¹

c
cuprate supercon-

ductors and our attempts to understand them in terms of
nonlocal e!ects peculiar to superconductors with a linearly
vanishing gap at nodal points. A number of questions re-
main unanswered. Perhaps the most interesting from a basic
point of view is the origin of the quasiparticle relaxation
process that continues smoothly through ¹

c
(33) from above

it to well below it. What are these #uctuations? Why are
they di!erent for transverse and longitudinal processes
above ¹

c
and become identical (?) below ¹

c
? Another issue of

interest is the nonmonotonic behavior of the Hall thermal
resistivity (Fig. 4) (16, 33). Why does it peak at relatively low
"elds of order a few Tesla, with a "eld scale that decreases
with temperature? To this one must add perhaps the most
signi"cant unexplained new phenomenon in the supercon-
ducting state, namely the origin of the sharply de"ned
41 meV inelastic neutron scattering peak at Q"(n,n,n) (42).
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